

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multi-threading and heterogeneous computing
made easy with Intel TBB

Optimized for

Supports

Addresses

What is Intel® TBB?
Intel TBB is a highly templatized C++
library designed to simplify the task
of adding parallelism to your
application by taking advantage of
all the CPU’s either on a single
device or across multiple devices
(heterogeneity).

Why should you use
Intel® TBB?

• High Performance
• Easy to use API’s
• Faster Time To Market
• Production Ready

Applications
• Animation Rendering
• Numeric weather prediction
• Oceanography & Astrophysics
• Artificial Intelligence & Automation
• Genetic Engineering
• Medical applications (Image

processing, MRI reconstruction)
• Remote sensing applications
• Socio Economics
• Financial sector (stock derivative

pricing, statistics)
• Bulk updating data files
• Any Big Data problems

How to get Intel® TBB?
Intel Parallel Studio XE

Intel System Studio
Free Tools Program

Open source site

Find out more at: http://software.intel.com/intel-tbb
Contact us through our forum:
http://software.intel.com/en-us/forums/intel-threading-building-blocks

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-system-studio
https://software.intel.com/sites/campaigns/nest/
https://www.threadingbuildingblocks.org/
http://software.intel.com/intel-tbb

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Advantages of using Intel TBB over other threading
models

• Specify tasks instead of manipulating threads. Intel® TBB maps your logical tasks onto
threads with full support for nested parallelism

• Intel TBB uses proven , efficient parallel patterns.

• Intel TBB uses work stealing to support the load balance of unknown execution time
for tasks. This has the advantage of low-overhead polymorphism.

• Flow graph feature in Intel TBB allows developers to easily express dependency and
data flow graphs.

• Has high level parallel algorithms and concurrent containers and low level building
blocks like scalable memory allocator , locks and atomic operations.

3

https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Rich Feature Set for Parallelism
Intel® Threading Building Blocks (Intel® TBB)
Generic Parallel Algorithms

Efficient scalable way to
exploit the power of multi-

core without having to
start from scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to containers that
are externally locked for thread-safety

Thread Local Storage

Efficient implementation
for unlimited number of

thread-local variables

Task Scheduler

Sophisticated work scheduling engine that empowers
parallel algorithms and the flow graph

Threads

OS API
wrappers

Timers and Exceptions

Thread-safe timers
and exception classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Flow Graph

A set of classes to
express parallelism as a

graph of compute
dependencies and/or

data flow

Parallel algorithms and
data structures

Threads and
synchronization

Memory allocation and
task scheduling

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Features and Functions List
Intel® Threading Building Blocks (Intel® TBB)
Generic Parallel Algorithms

• parallel_for
• parallel_reduce
• parallel_for_each
• parallel_do
• parallel_invoke
• parallel_sort
• parallel_deterministic_reduce
• parallel_scan
• parallel_pipeline
• pipeline

Concurrent Containers

• concurrent_unordered_map
• concurrent_unordered_multimap
• concurrent_unordered_set
• concurrent_unordered_multiset
• concurrent_hash_map

• concurrent_queue
• concurrent_bounded_queue
• concurrent_priority_queue
• concurrent_vector
• concurrent_lru_cache (preview)

Thread Local Storage

• combinable
• enumerable_thread_specific

Task Scheduler

• task
• task_group
• structured_task_group
• task_group_context

• task_scheduler_init
• task_scheduler_observer
• task_arena

Threads

• thread

Timers and Exceptions

• tick_count
• tbb_exception
• captured_exception
• movable_exception

Memory Allocation

• tbb_allocator
• scalable_allocator

• cache_aligned_allocator
• zero_allocator

• aligned_space
• memory_pool (preview)

Synchronization Primitives

• atomic
• mutex
• recursive_mutex
• spin_mutex
• spin_rw_mutex
• speculative_spin_mutex
• speculative_spin_rw_mutex

• queuing_mutex
• queuing_rw_mutex
• null_mutex
• null_rw_mutex
• reader_writer_lock
• critical_section
• condition_variable
• aggregator (preview)

Flow Graph

• graph
• continue_node
• source_node
• function_node
• multifunction_node
• overwrite_node
• write_once_node
• limiter_node
• buffer_node
• queue_node
• priority_queue_node
• sequencer_node
• broadcast_node
• join_node
• split_node

• indexer_node

Parallel algorithms and
data structures

Threads and
synchronization

Memory allocation and
task scheduling

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Task Execution in Intel TBB

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Generic algorithms allow reuse of proven parallel patterns
Intel® Threading Building Blocks (Intel® TBB)

9

int mandel(Complex c, int max_count) {
int count = 0; Complex z = 0;
for (int i = 0; i < max_count; i++) {
if (abs(z) >= 2.0) break;
z = z*z + c; count++;

}
return count;

}

for (int i = 0; i < max_row; i++) {
for (int j = 0; j < max_col; j++) {
p[i][j] = mandel(Complex(scale(i), scale(j)), depth);

}
}

Sequential version

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mandelbrot Speedup
Intel® Threading Building Blocks (Intel® TBB)

10

parallel_for(0, max_row,
[&](int i) {
for (int j = 0; j < max_col; j++)
p[i][j]=mandel(Complex(scale(i),scale(j)),depth);

}
);

int mandel(Complex c, int max_count) {
int count = 0; Complex z = 0;
for (int i = 0; i < max_count; i++) {
if (abs(z) >= 2.0) break;
z = z*z + c; count++;

}
return count;

}

Parallel algorithm

Use C++ lambda functions to define function object in-line

Task is a function object

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

A parallel_for recursively divides the range into subranges that execute
as tasks - Intel® Threading Building Blocks (Intel® TBB)

Split range...

.. recursively...

...until 
grainsize.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

A parallel_for recursively divides the range into subranges that execute
as tasks - Intel® Threading Building Blocks (Intel® TBB)

Split range...

.. recursively...

...until 
grainsize.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Flow Graph Hello World Example

Users create nodes and edges, interact with the graph and wait for it to
complete

13

tbb::flow::graph g;

tbb::flow::make_edge(h, w);

tbb::flow::continue_node< tbb::flow::continue_msg >

h(g, [](const continue_msg &) { std::cout << “Hello “; });

tbb::flow::continue_node< tbb::flow::continue_msg >

w(g, [](const continue_msg &) { std::cout << “World\n“; });

h.try_put(continue_msg());

g.wait_for_all(); f() f()

h w

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

An example feature detection algorithm

buffer

get_next_image
preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism

14

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

An example feature detection algorithm

buffer

get_next_image
preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism
And supports nested parallelism with Intel TBB, OpenMP*,

Intel® CilkTM Plus, Intel® Math Kernel Library (Intel® MKL), etc…

15

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

CPU Programming Model Hierarchy

B

C

A • Message Driven (TBB Flow Graph)
Uses same resources/scheduler as (B) since (A) is just
a another hierarchical layer

• Fork Join / Tasking (TBB Tasks)
Tolerant of unanticipated CPU loads and support
efficient composition

• SIMD
Requires compiler support. New standardization
proposal for parallel STL in C++ will integrate this layer
into the same software stack.

Sequential code
is just a special

case

Intel® Threading Building Blocks (Intel® TBB) is the C++ library that provides
what is needed for the Message Driven and Fork Join / Tasking layers

Intel Confidential

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Use all your available compute resources across
HW and SW through Intel TBB

Software
Other threading as well as domain

specific libraries and API’s

Hardware
Integrated graphics, media, CPU’s along

with discrete co-processors & accelerators
(FPGA’s, fixed function devices etc)

Composability layer with Intel TBB
One threading engine under all hardware (CPU) side work

Co-ordination layer with Intel TBB flow graph
Be the glue connecting HW & SW, expose parallelism between blocks & simplify integration

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

18

